Best bases for signal spaces

نویسندگان

  • Yonathan Aflalo
  • Alfred Bruckstein
  • Ron Kimmel
  • Nir Sochen
چکیده

Article history: Received 2 October 2016 Accepted 3 October 2016 Available online xxxx Presented by Haïm Brézis We discuss the topic of selecting optimal orthonormal bases for representing classes of signals defined either through statistics or via some deterministic characterizations, or combinations of the two. In all cases, the best bases result from spectral analysis of a Hermitian matrix that summarizes the prior information we have on the signals we want to represent, achieving optimal progressive approximations. We also provide uniqueness proofs for the discrete cases. © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New characterizations of fusion bases and Riesz fusion bases in Hilbert spaces

In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

On isomorphism of two bases in Morrey-Lebesgue type spaces

Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.

متن کامل

Quantifying Democracy of Wavelet Bases in Lorentz Spaces

We study the efficiency of the greedy algorithm for wavelet bases in Lorentz spaces in order to give the near best approximation. The result is used to give sharp inclusions for the approximation spaces in terms of discrete Lorentz sequence spaces. Constr. Approx. 33 (2011), no. 1, 1--14

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016